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Abstract 0 A simple experimental procedure is described, en- 
abling estimates of the activation energy and preexponential fac- 
tor for drug decomposition to be obtained from a single experi- 
ment. A computer program was written which bypasses the prob- 
lem of slope determination and the consequent lack of final errors 
associated with graphical methods. It uses numerical integration 
and an iterative nonlinear least-squares treatment to ensure reli- 
able and consistent parameter estimates and provides information 
on parameter uncertainties. The method is quite sensitive to de- 
viations from the mathematical model and has been illustrated 
with the decomposition of riboflavin in alkaline solution. 
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and iterative nonlinear least-squares treatment Activation ener- 
gies-integral approach to nonisothermal estimation, computer 
program, example from literature 0 Decomposition-computer 
program for estimation of activation energy and preexponential 
factor of drug decomposition 

The recent literature reflects a growing interest in 
nonisothermal methods for estimation of activation 
energies and the accelerated prediction of the stabili- 
ty  of pharmaceuticals (1-4). Compared to the iso- 
thermal approach, these methods have been a com- 
promise, reducing experimental effort but decreasing 
the accuracy of the final estimates. 

The purpose of this paper is to show that the acti- 
vation energy describing decomposition of a drug is a 
highly defined parameter. Provided computational 
facilities are available, the data obtained from a sim- 
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ple experimental procedure can be processed to give 
good activation energy estimates and, if required, 
rate constants a t  selected temperatures. 

THEORETICAL 

Decomposition of a drug is commonly represented by Eq. 1: 

- (f> = kc," 
, 

where ci = concentration at time ti, k = observed rate constant, 
and n = order of the reaction. 

If the Arrhenius equation applies, then: 

where A = preexponential factor, Ea = activation energy, R = 
universal gas constant, and Ti = absolute temperature at time tf. 

For the first-order case (n = l), Eq. 1 can be rearranged; sub- 
stituting fork gives Eq. 3: 

To integrate Eq. 3, the series of temperature readings is first 
represented as a function of time. A polynomial is usually ade- 
quate for this, enabling Eqs. 4-6 to be formed: 

- J $ d c  = A Je-ZaiRT(tldf (Es. 4) 

- In c,  = A I ,  + constant (Eq. 5 )  

(Eq. 6) 

Substitution for time to in Eq. 5 shows that the constant term 

Then Eq. 5 can be seen to give: 

1, = lc:' e-Ea/Rhrldt 

is -In c,. 

c ,  = c,,e-"'i (Eq. 7 )  

The concentration data (c,) are nonlinear with respect to the 
two unknown parameters A and Ea. With initial estimates, an it- 
erative least-squares regression can be used to find the best esti- 
mates, minimizing Eq. 8 until convergence: 

Equations similar to Eq. 7 can be derived for the zero- and sec- 
ond-order cases (Eqs. 9 and 10, respectively) and the data may be 
treated using the same nonlinear approach: 

c,  = c,, - A I ,  

c, = (AZ, + c[ ' ) - '  

(Es. 9) 
(Q. 10) 

PROGRAMMING 

A flow chart of the program is shown in Scheme I. The various 
subroutines perform the following functions. 

INPUT: Data read in by INPUT include the number of data 
points (N); the order of the reaction (ORDER); initial estimates 
for the two unknown parameters (XI and Xd; various experimen- 
tal information pertinent to a given run (HEAD); the dependent 
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Table I-Source Data for Nonisothermal Treatment 
of Riboflavin Decomposition in 0.1 N N a O H  

Table 11-Polynomial Regression of Experimental 
Temperature  Values on  Time" 

Absor- Tempera- Observed Calculated 
bance Minutes ture Tempera- Tempera- 

0.640 0 21.0" 
0.637 10 25.7" 0 .  294.16' 294.29' -0,131 0,9995 

Hours  tu re  ture Residuals Ratios 

0.633 
0.622 
0.618 
0.589 

20 
30 
40 
51 .5  

29.4' 0.1667 298.86' 298.50' 0.361 1.0012 
33.4' 
37.7' 

~. - .  _ _  - .  ~ ~ 

0.3334 302.56' 302.66' -0.099 0.9997 
0.5000 306.56' 306.87' -0.306 0.9990 

43.0' 0,6667 310.86' 311.02' -0.163 0.9995 
0.568 60 46.0' 0.8583 316.16' 315.64' 0.515 1.0016 
0.534 70 49.2' 1.0000 319.16' 318.96' 0.200 1.0006 

0.423 90 57.0' 1.3334 326.66' 326.62O 0.037 1.0001 

0.315 1.0009 0.191 120 66.6' 1.6667 334.16' 333.84" 

2.1667 343.66' 343.62' 0.044 1.0001 

0.488 80 53.5' 1.1667 322.36' 322.81' -0.446 0.9985 

0.351 100 61.0' 1.5000 330.16" 330.35' -0.193 0.9994 

0.124 130 70.5' 2.0000 339.76' 339.89' -0.134 0.9996 

variable, in this case aqueous absorbance (AQABS); and time 
and temperature (TIME and TEMP, respectively). Time is 
changed from minutes to hours to minimize overflow in the sub- 
sequent polynomial regression, and the temperature is changed to 
absolute, as required by Eq. 2. 

POLNOM: Initially, a fourth-order polynomial for the tempera- 
ture on time regression was found adequate for simple monotonic 
temperature changes, with all of the absolute residual values less 
than 0.4% of the predicted values. To allow additional experi- 
mental flexibility in the time-temperature relationship, a sev- 
enth-order polynomial was used, giving residuals usually less 
than 0.3%. The number of data points in this regression was al- 
ways greater than 12, making the occurrence of spurious station- 
ary points impossible. An 8 X 8 matrix of simultaneous equation 
coefficients was fed into SIMQ', together with eight constant 
terms for an analytical solution. Then the observed and predicted 
data, residuals, and ratios were printed out for visual inspection. 

FUNMIN: The Adaptive Simplex approach (5) to function mini- 
mization was programmed as a subroutine FUNMIN. This in- 
volves a direct search based on the sum of squares, making no as- 
sumptions about the function or its derivatives, so that initial es- 
timates are not critical to successful execution. The only conse- 
quence of poor initial estimates is a longer processing time. FUN- 
MIN calls on a function subroutine (RESIDS) which computes 
the residual sum of squares for any pair of parameter estimates 
(XI and X z ) .  It was sufficient to set the increments f D X )  for the 
initial simplex a t  50 and 10% for A and Ea, respectively. FUN- 

I 

-60 1 .-. 
0 20 40 60 80 100 120 140 

MINUTES 

Figure 1-Data processed according to zero- (X), first- (O) ,  
and second- (0) order kinetics. Along with other factors, an 
analysis of the residuals makes a decision on the best model 
simple. 

a Regression coefficients: 294.29, 26.33, -11.74, 41.28, -66.72, 52.69, 
-20.14, 29.71. Coefficients are listed in increasing order, i.e., the constant 
term first, then thelinear coe5cient;etc. 

MIN performs 24 iterations before returning to MAIN, and a 
maximum of 12 calls on FUNMIN is allowed. 

RESIDS: This function subroutine is called by FUNMIN for each 
set of parameter estimates. To find the sum of squares, the right- 
hand side of Eq. 6 has to be evaluated. Using the trapezoidal 
rule, the integrals for each interval tl to ti+l are estimated sepa- 
rately since this involves less processing time. Then the total in- 
tegral from zero time to any time ti is obtained by summation. 
Then, for a chosen reaction order, a series of predicted concentra- 
tions can be calculated using Eq. 7, 9, or 10. Finally, a value for 
the sum of squares is computed using Eq. 8 and control returns to 
FUNMIN. 

TRAPEZ and F: Subroutine TRAPEZ numerically estimates the 
integrals using the trapezoidal rule. That is, the interval is suc- 
cessively halved until the change in the integral is below some 
acceptable level (TEST). This criterion has a large effect on pro- 
cessing time, so it is important to find an acceptably accurate 
level. In the present work, concentrations were determined by 
measurement of absorbance values, and the error standard devia- 
tion of these readings was usually not greater than 0.003, so that 
in the worst case the relative error in primary absorbance data 
might be 0.003/0.1 = 3%. For a first-order reaction, this would 
correspond to an uncertainty of approximately 2% in the integral 
(I, in Eq. 7). Since there is probably no point in performing sub- 
sequent calculations a t  better than a tenth of the error in the pri- 
mary data, TEST was set a t  0.2%. This value ensured fast pro- 
cessing, and reduction to a lower level did not alter the parameter 
estimates. 

ERROR: The standard deviations of the derived parameters were 
estimated by matrix inversion using the sums of the cross-prcd- 
ucts of the partial derivatives (6). Normalization of this 2 X 2 
matrix ensured that the off-diagonal elements of the unit matrix 
were never greater than 1 x 10- 6 .  

MAIN: After the errors have been computed, control returns to 
MAIN. If the difference between the final sum of squares from 
two successive calls on FUNMIN is less than 1%, then the pro- 
gram has converged a t  what most likely will be the true mini- 
mum. If not, then FUNMIN is called again, setting the new in- 
crements equal to the computed standard deviations. 

When convergence has been achieved, i t  remains to print out a 
table of observed and predicted absorbance readings, residuals, 
and the residuals expressed as error standard deviations. If any 
data point is outside 3 SD (for 12-30 points), then a caution is 
printed out. The predicted rate constants for the various experi- 
mental temperatures also are listed in this table. 

As a final aid in confirming convergence or in suggesting the 
direction of better initial estimates, a contour diagram is printed, 
showing the sum of squares for the two variables f4 SD.  

The program was written in FORTRAN IV2, and all calcula- 
tions were done on an automatic computer3. For average data 

IBM/360 Scientific Subroutine Package, 1967 
A listing is available on request from the authors. 
32K IBM 7040. 
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Table 111-Summary of the Convergence History 

Preexponential Activation 
Iteration Factor, Energy 9 Sum of 
Number X lO13hr-' kcal mole-' Squares 

Initial estimates 
Current value 

Final value 
S D  

SD 

1 

2 

2.0 
2.903 
0.273 
2.876 
0.270 

21.0 
20.370 
0.063 

20,364 
0.063 

5,655 X 10 --j 

5.653 X 10 --j 

and fair initial estimates, the usual execution time was 2-4 min. 

EXPERIMENTAL 

The degradation of riboflavin under aqueous alkaline condi- 
tions was chosen to illustrate the technique. Generally, the meth- 
od followed the procedures used to study the reaction between 
octatomic sulfur and triphenylphosphine in benzene (7) and to fol- 
low the acid-catalyzed hydrolysis of ethyl acetate (8). 

M) and sodium hydroxide (0.05 or 
0.1 N) was heated so that the temperature rose conveniently over 
the temperature range of interest. At  selected times, samples 
were taken, quenched in acetic acid, and assayed spectrophoto- 
metrically as previously described (9). The temperature of the so- 
lution was noted each time a sample was taken for analysis, giv- 
ing three corresponding sets of primary data: concentration, time, 
and temperature. 

To obtain the best combined parameter estimates from differ- 
ent experiments, the weighted means and standard deviations 
were calculated according to Eqs. 11-13: 

A solution of riboflavin 

1 w = -  
' s,? 

(Eq. 11) 

(Eq. 12) 

(Eq. 13) 

where s, = standard deviation of an individual point x, ,  w, = 
weight for the point x,, f = weighted mean, and 3 = weighted 
standard deviation. 

The uncertainty in the predicted rate constant a t  a given tem- 
perature was computed using Eq. 14: 

where Sk, SA, and SE, are the uncertainties in the predicted rate 
constant and estimated preexponential factor and activation en- 
ergy, respectively. 

The nonisothermal estimates were confirmed by designing an 
isothermal experiment using the same assay procedure and 50 
data points a t  temperatures of 20, 35, and 50". Final parameter 
estimates were computed by weighted least squares (10). 

RESULTS AND DISCUSSION 

Table I lists typical experimental results for input to the pro- 
gram, and Tables 11-V summarize the results of computations on 
this data set. Provided the reaction is followed through a t  least 
two half-lives and that the data are spread uniformly over the 
whole range, only 12 points are needed to define the two unknown 
parameters sufficiently. If additional experimental effort is indi- 
cated, it is probably better spent in repeating the whole run than 
in gathering more data points for the given experiment. This ap- 
proach represents a distinct advance in experimental effort over 
the more standard isothermal procedure. Adjustment of the heat- 
ing rate is completely flexible, and temperature may be increased 
at a rate chosen to achieve the desired degree of decomposition in 
a convenient experimental time. This ensures that estimates can 
be gained from the first experiment. 

One assumption made in this method is that co (the first sam- 

Table IV-Comparison of Experimental and  
Predicted Data 

Pre- 
dicted 

Pre- Rate 
Observed dicted Scatter Con- 

Absor- Absor- Residuals, as stants, 
bance bance X SD hr - *  
0.637 0.6370 
0.633 0.6322 
0.622 0.6247 
0.618 0.6130 
0.589 0.5921 
0.568 0.5697 
0.534 0.5339 
0.488 0.4857 
0.423 0.4239 
0.351 0.3502 
0.191 0.1927 
0.124 0.1229 

-0.02 
0.75 

-2.71 
5.00 

-3.08 
-1.74 

0.10 
2.33 

-0.89 
0.80 

-1.72 
1.10 

-0.01 
0.33 

-1.19 
2.21 

-1.36 
-0.77 

0.05 
1.03 

-0.39 
0.35 

-0.76 
0.49 

0.0367 
0.0558 
0.0869 
0.138 
0.240 
0.325 
0.447 
0.680 
0.948 
1.37 
2.28 
3.21 

ple taken) is known without error. Since the temperature is 
changing least rapidly at  the commencement of a run, it should 
be the most certain of the assay results. By taking a duplicate 
and averaging the results, the error incurred should not be great. 
At the cost of increased processing time, the alternative is to have 
three variables in the regression; the program is sufficiently gen- 
eral to be easily modified when this is needed. 

The fact that the predicted temperature readings from the 
polynomial regression do not fit the observed temperatures exact- 
ly (absolute residual values not greater than 0.2% in Table II) is 
not a problem, since positive and negative fluctuations are aver- 
aged out during integration. If the regression was so bad that all 
of the residuals were positive and +0.1%, an average error of 
+0.1% would be introduced in the computed integrals, which is 
well within the experimental level of *2% discussed previously. 
Pragmatically, as reported previously (ll), the parameter esti- 
mates are fairly insensitive to temperature errors with such an in- 
tegral nonisothermal approach. For example, if all the tempera- 
ture readings from the data in Table I are lowered by lo, then the 
computed activation energy changes from 20.36 f 0.06 to 20.24 f 
0.064 kcal mole- l, and the preexponential factor changes from 

The final results for the two systems studied (0.05 and 0.1 N 
sodium hydroxide) are shown in Table VI, together with the iso- 
thermal results. Parameter variation between runs is probably 
better than the normally tolerated levels, and agreement with the 
isothermal method is good. However, previous workers (1, 9) 
quoted slightly lower values for the activation energy (Table VII). 
Hughes (11) commented that higher results may be obtained with 
nonisothermal techniques, and part of this discrepancy may be 
due to faulty data treatment in the classical isothermal approach. 
When the same isothermal data in Table VI were processed by 
taking log absorbance, linearly regressing on time, and then mak- 
ing an unweighted linear regression of log k on reciprocal temper- 
ature, the parameter estimates were slightly depressed (Table 
VII). 

The approach presented here is sensitive to deviations from the 
expected order decomposition, as could be due to change of mech- 
anism or approach to equilibrium. Attainable experimental preci- 

(2.9 f 0.3) x 1013 to (2.6 f 0.2) x 1013 hr- 1. 

All calculated uncertainties in this report are given as standard devia- 
tions. 

Vol. 63, No. 5, May 1974 J 779 



Table V-Total Sum of Squares Dependence on the  Two Nonlinear Variables about the  Best Estimates 

Pre- 

Factor, 
exponential Activation Energy, kcal mole-' 

x 1013 hr-1 20.12 20.18 20.24 20.30 20.36 20.42 20.48 20.54 20.60 

3 .96  0,108E-0 0.7993-1 0.5623-1 0.3683-1 0.215E-1 0,1043-1 0.3303-2 0.2293-3 0.101E-2 
3.69 0,8723-1 0.6243-1 0.417E-1 0.2533-1 0.1303-1 0,4823-2 0.6713-3 0.4233-3 0.3913-2 
3.42 0.6753-1 0.4593-1 0.2853-1 0.1533-1 0,6243-2 0,1233-2 0.1533-3 0.2863-2 0.9143-2 
3.15 0.490E-1 0,3093-1 0.1713-1 0.7363-2 0.1733-2 0.6743-4 0.2233-2 0.8003-2 0.172E-1 
2.88 0.3223-1 0.180E-1 0.7953-2 0.201E-2 0.5653-4 0.1953-2 0.7483-2 0.164E-1 0.2853-1 
2.61 0.1783-1 0.7833-2 0.1943-2 0.5803-4 0.2023-2 0.7643-2 0.167E-1 0.2883-1 0.4373-1 
2.34 0.6873-2 0.1483-2 0.103E-3 0.2563-2 0.8653-2 0,1813-1 0.307E-1 0.460E-1 0.6373-1 
2.06 0,7323-3 0.401E-3 0.3873-2 0.109E-1 0.2133-1 0.3463-1 0.507E-1 0,690E-1 0.8933-1 
1 .79  0.151E-2 0.6633-2 0.1523-1 0.2703-1 0.416E-1 0.5883-1 0.781E-1 0.991E-1 0.122E-0 

Table VI-Best Parameter Estimates for Riboflavin Decomposition 

Experi- Number 
ment of Data 

Number Points  A, x1013hr-1 Ea, kcal mole-' 

0.05 N NaOH 1 12 
2 13  
3 26 

Weighted mean and SD 
Weighted least-squares 

isothermal estimates 

1.2282 f 1.241 
2.1104 f 0.383 
1.341 f 0 . 0 9 8 0  

1.39 f 0.09 
1 .21  f 0.98  

0.1 N NaOH 4 12 2.8793 f 0 . 2 7 0  
5 12 1.9194 f 0.451 
6 14 4.0999 f 0.594 
7 20 1.4734 f 1.70 

Weighted mean and SD 2 . 8  f 0 . 2  
Weighted least-squares 3 . 3  f 4 .2  

isothermal estimates 

20.017 3~ 0.717 
20.366 f 0.124 

20.0872 f 0.0490 
20.12 =t 0 .04  
20.0 f 0 . 5  

20.3637 f 0.0626 
20.0851 f 0.161 
20.565 =t 0.0963 

19.8780 f 0.8005 
20.39 f 0.05  
20.3 f 0 . 8  

Table VII-Comparison of Results with Previous Literature Reports on the Decomposition of Riboflavin in  0.05 N NaOH 

Isothermal 
Unweighted 

Nonisothermal Rogers (1) Gut tman (9) Least Squares 

0 . 8  = t0 .75  Preexponential factor X 1013, h r - 1  1 . 6  f 0 .4  - - 
Activation energy, kcal mole -1 20.09 f 0.05 17.85 19.2 1 9 . 7  f 0 . 4  
Rate constant at 20°, hr-1 0.014 f 0.002 0.018 0.016 - 

Table VIII-Simulation of an Equilibrium Situationa 

Observed Predicted Scatter 
Absor- Absor- Residuals, as Error 
bance bance x 10-3 SD 

0.637 0.6365 0.44 0 .09  
0.633 0.6312 1.80 0.37 
0.622 0.6320 -0.97 -0.20 
0.618 0.6105 7.48 1 . 5 3  
0.589 0.5890 0 .03  0.00 
0.568 0.5665 1 .48  0 .30  
0.534 0.5312 2.75 0.56 
0.488 0.4848 3.24 0.66 
0.423 0.4262 -3.19 -0 .65  
0.351 0.3570 -5.99 -1.22 
0.202 0.2082 -6.17 -1.26 
0.150 0.1400 10.00 2.04 

Sum of squares = 2.65 X 10-4 
Absorbance error = f 0 .  0049 

A ( X  10" hr-l) = 0 .4  f 0.10 
Ea (kcal mole-') = 19.1  + 0 . 2  

4 This table should be compared to Table IV. 

sion is readily established (in this work, not greater than &0.003 
absorbance unit) and if the breakdown does not follow such a 
simple integer order, the program will make the best fit possible 
and return a large error standard deviation. Together with non- 

Table IX-Effect of Using Absolute Absorbance or Log 
Absorbance Values as Dependent Variable in  
Nonlinear Regression 

Dependent 
Variable (ci) 0.05 N NaOH 0.1 N NaOH 

Absolute absorbance: 

Log absorbance: 

1 .3  f 0 . 1  2 .9  f 0 . 3  A, x 1 0 1 3 h r - 1  
Ea, kcal mole -1 20.09 f 0.05 20.36 f 0.06 

A, x 1 0 1 3 h r - 1  0 .8  f 0 . 1  2 .6  f 0 .6  
Ea, kcal mole -1 19.7 f O . 1  20.3 f 0.2  

Number of d a t a  points 26 12 

normality of residuals, this should serve as a warning that all is 
not well. 

If an equilibrium situation applies, then the greatest deviation 
will occur in the later time readings. Sensitivity to such a system 
was tested by simulation and the results are shown in Table VIII. 
The last two absorbance readings in Table I were increased from 
0.191 to 0.202 and from 0.124 to 0.150, and then this new data set 
was fed into the program. It will be seen that the uncertainty in 
the absorbance readings increases from &0.0023 to *0.0049, the 
residuals are no longer randomly distributed, and the last point is 
accounting for approximately 40% of the total sum of squares. 

Weighting of data points should also be considered. In this 
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Table X-Effect of Treating Decomposition Data According to Different Mathematical Models, Namely Zero, First, 
and Second Ordep 

Order 
Zero First Second 

A ,  hr-1 
Ea, kcal mole-’ 
Absorbance error 

(7.0 f 7.0) X 1W 
1 1 . 2  f0.7 

f 0.021 

(1 .3  3 ~ 0 . 1 )  X 10” (1.6 f 0.5)  X lo’* 
2 8 . 7  f 0 . 2  20.09 f 0.05 

f 0.0029 f 0.010 

(1 In this caee, the data confirm literature reports stating the decomposition is 6rat order. 

case, the dependent variable (c,) is measured using a UV spectro- 
photometer. The reported uncertainty in such an instrument is 
*0.005 absorbance unit5, which represents a constant absolute 
error. Therefore, i t  is more correct to use the absolute absorbance 
values than the log absorbance. In a least-squares procedure, the 
former approach would minimize as far as possible to a constant 
absolute error, whereas the latter minimizes toward a constant 
relative error. Log weighting of the absorbance readings invari- 
ably returned a slightly lower value for the activation energy than 
when the absolute values were used and often produced nonran- 
dom residuals. The biggest factor against using log absorbance in 
this nonisothermal technique is the comparatively larger relative 
standard deviations for the two parameters (Table Do. 

The nonisothermal approach is very sensitive to the order of 
the reaction, so prior isothermal experiments need not be made to  
establish order. Data can be submitted for analysis, and the con- 
sequences of treating a reaction by the wrong mathematical 
model are clearly pointed out (see Fig. 1 and Table X). In this in- 
stance, an examination of the residuals clearly shows the reaction 
is first order, and this is substantiated by the smaller parameter 
and absorbance error standard deviations. 

Manual, Perkin-Elmer model 124 double-beam spectrophotometer. 
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Quantitative GLC Analysis of Plasma Cholesterol 

P. A. HARRISX and K. L. HARRIS 

Abstract A GLC method is described for the quantitative anal- 
ysis of cholesterol in plasma. The method was applied to the 
analysis of total cholesterol in 152 human plasma samples and 
compared with the results obtained by a standard automated col- 
orimetric procedure on the same samples with values ranging from 
100 to 472 mg W. The results of the two methods when subjected 
to a linear regression analysis yielded a sample correlation coeff- 
cient of 0.969 and a standard error of the estimate of f15.2. The 
precision of the GLC method was determined by repeated total 
cholesterol analysis of the plasma of three human subjects. Simi- 
lar results were obtained with all three. One of these had a mean 
total cholesterol of 172 mg % in 19 determinations with a stan- 

dard error of the mean of f l . O .  Results with a single sample may 
be obtained in less than 2 hr, and one technician may obtain the 
results on 40 samples in 1 day using manual techniques. The 
GLC procedure clearly separates cholesterol from desmosterol and 
lanosterol. Adjustments in the volume and type of solvents allow 
quantitative determination of as little as 1.0 pglsample. Evidence 
indicates that the method may be used for determining nonesteri- 
fied cholesterol in the plasma. 

Keyphrases Cholesterol-quantitative GLC analysis in plasma, 
compared to colorimetric method GLC-analysis, cholesterol in 
plasma, compared to colorimetric method 

The determination of cholesterol in plasma is most 
often accomplished by procedures that require strong 

acids and/or ferric chloride to yield colored products. 
These methods measure the total cholesterol con- 
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